A1 Euler and Hamiltonian Circuits (6 marks)

a) This graph has many Euler circuits starting at vertex 0. Every Euler circuit can be traversed in two directions, starting either with edge A and finishing with C , or starting with edge C and finishing with A. Similarly, any subcircuit of an Euler circuit can be traversed in two directions. Here are some of the most commonly found circuits that start with edge A (there are more):

- ADEBFLQPKHGJONMIC
- ADEBFHGJKLQPONMIC
- ADEBFLQPONMIJKHGC
- ADEBFLQKHGJPONMIC
b) This graph has two Hamiltonian circuits starting at vertex 0 :
- ADEBFLQOMIC and its reverse CIMOQLFBEDA

A2 Matrices in Graph Theory (5 marks)

b)

1. A3 Simple Graphs (14 marks)
a)

b) W_{n} is the graph formed by combining C_{n} and S_{n} :
i.e. $V\left(W_{n}\right)=V\left(S_{n}\right)$ and $E\left(W_{n}\right)=E\left(S_{n}\right) \cup E\left(C_{n}\right)$
i.e $W_{n}-S_{n}=C_{n}$
c) For the graph G underneath:
i. Circle all the centers of G on the diagram
ii. \quad Radius $\rho(\mathrm{G})=2$
iii. Diameter $\delta(\mathrm{G})=4$
iv. Give one of the walks (i.e. list the vertices of the walk in order) that is the length of this diameter: ABDFG, or ABCFG, or AEDFG

d) For the special graphs defined in a) when $n \geq 3$:

Graph G	K_{n}		C_{n}	S_{n}
Radius $\rho(\mathrm{G})$	1	$\left\lfloor\frac{n}{2}\right\rfloor$	1	$\mathrm{~W}_{\mathrm{n}}$
Diameter $\delta(\mathrm{G})$	1	$\left\lfloor\frac{\mathrm{n}}{2}\right\rfloor$	2	1

PART B - SEQUENCES, RECURRENCE RELATIONS - 10 MARKS

Given the sequence a_{n} defined with the recurrence relation:

```
\(\mathrm{a}_{0}=3\)
\(a_{k}=5 a_{k-1}+2 k\) for \(k \geq 1\)
```

2. Terms of the Sequence (5 marks)
$\mathrm{a}_{1}=5.3+2.1$
$\mathrm{a}_{2}=5(5.3+2.1)+2.2=3.5^{2}+5.2 .1+2.2$
$\mathrm{a}_{3}=5\left(3.5^{2}+5.2 .1+2.2\right)+2.3=3.5^{3}+5^{2} .2 .1+5^{1} .2 .2+5^{0} .2 \cdot 3$
$\mathrm{a}_{4}=5\left(3.5^{3}+5^{2} \cdot 2 \cdot 1+5^{1} \cdot 2 \cdot 2+5^{0} \cdot 2 \cdot 3\right)+2.4=3.5^{4}+5^{3} \cdot 2 \cdot 1+5^{2} \cdot 2 \cdot 2+5^{1} \cdot 2 \cdot 3+5^{0} \cdot 2 \cdot 4$
$\mathrm{a}_{5}=5\left(3.5^{4}+5^{3} \cdot 2 \cdot 1+5^{2} \cdot 2 \cdot 2+5^{1} \cdot 2 \cdot 3+5^{0} \cdot 2 \cdot 4\right)+2 \cdot 5=3 \cdot 5^{5}+5^{4} \cdot 2 \cdot 1+5^{3} \cdot 2 \cdot 2+5^{2} \cdot 2 \cdot 3+5^{1} \cdot 2 \cdot 4+$ $5^{0} .2 .5$
3. Iteration (5 marks)
$\mathrm{a}_{\mathrm{n}}=3.5^{\mathrm{n}}+2 \sum_{i=0}^{n-1} 5^{i}(n-i)$

PART C - INDUCTION - 15 MARKS

Given the sequence b_{n} defined recursively as:

$$
\begin{aligned}
& b_{0}=3, b_{1}=7 \\
& b_{k}=3 b_{k-1}-2 b_{k-2} \text { for } k \geq 2
\end{aligned}
$$

You will now prove by strong induction that a solution to this sequence is $b_{n}=2^{n+2}-1$.

1. Problem Statement (2 marks)

The conjecture being proved is expressed symbolically in the form $\forall \mathrm{n} \in \mathrm{D}, \mathrm{P}(\mathrm{n})$, where:
a) $(1$ mark) $\mathrm{D}=\mathbb{N}$
b) (1 mark) $P(n)$ is: $b_{n}=2^{n+2}-1$
2. Base Cases (4 marks)

- When $\mathrm{n}=0,2^{\mathrm{n}+2}-1=2^{2}-1=3=\mathrm{b}_{0}$
- When $\mathrm{n}=1,2^{\mathrm{n}+2}-1=2^{3}-1=7=\mathrm{b}_{1}$

3. Inductive step setup (3.5 marks)

- (2 marks) State the assumption in the inductive step and identify the inductive hypothesis Assume that some $\mathrm{k} \geq 1$ is such that $\forall \mathrm{m} \in\{0, \ldots, \mathrm{k}\} \mathrm{b}_{\mathrm{m}}=2^{\mathrm{m}+2}-1 \leftarrow \mathrm{IH}$: Inductive Hypothesis
- (1.5 marks) State what you will be proving in the inductive step.

We will prove $P(k+1)$, i.e. $b_{k+1}=2^{(k+1)+2}-1=2^{k+3}-1$
4. Remainder of Inductive step (5.5 marks).

Since $\mathrm{k} \geq 1$ then $\mathrm{k}+1 \geq 2$ and the recurrence relation applies to $\mathrm{k}+1$:
$b_{k+1}=3 b_{k}-2 b_{k-1}$
$\mathrm{k} \leq \mathrm{k}$ and $\mathrm{k}-1 \leq \mathrm{k}$ and therefore the inductive hypothesis applies to them:
$b_{k}=2^{k+2}-1$ and $b_{k-1}=2^{k+1}-1$
Therefore:
$\mathrm{b}_{\mathrm{k}+1}=3 \mathrm{~b}_{\mathrm{k}}-2 \mathrm{~b}_{\mathrm{k}-1}=3\left(2^{\mathrm{k}+2}-1\right)-2\left(2^{\mathrm{k}+1}-1\right) \quad$ By IH

$$
=3.2^{\mathrm{k}+2}-3-2.2^{\mathrm{k}+1}+2
$$

$$
=3.2^{\mathrm{k}+2}-1-2^{\mathrm{k}+2}
$$

$$
=2.2^{\mathrm{k}+2}-1
$$

$$
=2^{\mathrm{k}+3}-1 \quad \text { Algebra }
$$

QED

