PART A – GRAPH THEORY – 25 MARKS

A1 Euler and Hamiltonian Circuits (6 marks)

- a) This graph has many **Euler** circuits starting at vertex 0. Every Euler circuit can be traversed in two directions, starting either with edge A and finishing with C, or starting with edge C and finishing with A. Similarly, any subcircuit of an Euler circuit can be traversed in two directions. Here are some of the most commonly found circuits that start with edge A (there are more):
 - ADEBFLQPKHGJONMIC
 - ADEBFHGJKLQPONMIC
 - ADEBFLQPONMIJKHGC
 - ADEBFLQKHGJPONMIC
- b) This graph has two Hamiltonian circuits starting at vertex 0:
 - ADEBFLQOMIC and its reverse CIMOQLFBEDA
- A2 Matrices in Graph Theory (5 marks)

1. A3 Simple Graphs (14 marks)

a)

- b) W_n is the graph formed by combining C_n and S_n : i.e. $V(W_n)=V(S_n)$ and $E(W_n)=E(S_n)\cup E(C_n)$ i.e W_n - $S_n = C_n$
- c) For the graph G underneath:
 - i. Circle all the centers of G on the diagram
 - ii. Radius $\rho(G) = 2$
 - iii. Diameter $\delta(G) = 4$
 - iv. Give one of the walks (i.e. list the vertices of the walk in order) that is the length of this diameter: ABDFG, or ABCFG, or AEDFG

d) For the special graphs defined in a) when $n \ge 3$:

Graph G	K _n	Cn	Sn	Wn
Radius p(G)	1	$\left\lfloor \frac{n}{2} \right\rfloor$	1	1
Diameter δ(G)	1	$\left\lfloor \frac{n}{2} \right\rfloor$	2	$\begin{cases} 1 \text{ when } n = 3 \\ 2 \text{ when } n > 3 \end{cases}$

PART B - SEQUENCES, RECURRENCE RELATIONS - 10 MARKS

Given the sequence a_n defined with the recurrence relation:

$$\label{eq:a0} \begin{split} a_0 &= 3 \\ a_k &= 5a_{k\text{-}1} + 2k \text{ for } k \geq 1 \end{split}$$

2. <u>Terms of the Sequence (5 marks)</u>

 $\begin{array}{l} a_1 = 5.3 + 2.1 \\ a_2 = 5(5.3 + 2.1) + 2.2 = 3.5^2 + 5.2.1 + 2.2 \\ a_3 = 5(3.5^2 + 5.2.1 + 2.2) + 2.3 = 3.5^3 + 5^2.2.1 + 5^1.2.2 + 5^0.2.3 \\ a_4 = 5(3.5^3 + 5^2.2.1 + 5^1.2.2 + 5^0.2.3) + 2.4 = 3.5^4 + 5^3.2.1 + 5^2.2.2 + 5^1.2.3 + 5^0.2.4 \\ a_5 = 5(3.5^4 + 5^3.2.1 + 5^2.2.2 + 5^1.2.3 + 5^0.2.4) + 2.5 = 3.5^5 + 5^4.2.1 + 5^3.2.2 + 5^2.2.3 + 5^1.2.4 + 5^0.2.5 \end{array}$

3. Iteration (5 marks)

 $a_n = 3.5^n + 2\sum_{i=0}^{n-1} 5^i (n-i)$

PART C - INDUCTION - 15 MARKS

Given the sequence b_n defined recursively as:

$$\begin{split} b_0 &= 3, \, b_1 = 7 \\ b_k &= 3 b_{k-1} - 2 b_{k-2} \text{ for } k \geq 2 \end{split}$$

You will now prove by **strong induction** that a solution to this sequence is $b_n = 2^{n+2} - 1$.

1. Problem Statement (2 marks)

The conjecture being proved is expressed symbolically in the form $\forall n \in D$, P(n), where:

- a) $(1 \text{ mark}) D = \mathbb{N}$
- b) (1 mark) P(n) is: $b_n = 2^{n+2} 1$
- 2. Base Cases (4 marks)
 - When n=0, $2^{n+2} 1 = 2^2 1 = 3 = b_0$
 - When n=1, $2^{n+2} 1 = 2^3 1 = 7 = b_1$
- 3. Inductive step setup (3.5 marks)
- (2 marks) State the assumption in the inductive step and identify the inductive hypothesis. Assume that some $k \ge 1$ is such that $\forall m \in \{0, ..., k\}$ $b_m = 2^{m+2} - 1 \leftarrow IH$: Inductive Hypothesis
- (1.5 marks) State what you will be proving in the inductive step. We will prove P(k+1), i.e. $b_{k+1} = 2^{(k+1)+2} - 1 = 2^{k+3} - 1$
- 4. <u>Remainder of Inductive step (5.5 marks).</u>

Since $k \ge 1$ then $k+1 \ge 2$ and the recurrence relation applies to k+1: $b_{k+1} = 3b_k - 2b_{k-1}$ $k \le k$ and $k-1 \le k$ and therefore the inductive hypothesis applies to them: $b_k = 2^{k+2} - 1$ and $b_{k-1} = 2^{k+1} - 1$ Therefore: $b_{k+1} = 3b_k - 2b_{k-1} = 3(2^{k+2} - 1) - 2(2^{k+1} - 1)$ $= 3.2^{k+2} - 3 - 2.2^{k+1} + 2$ $= 3.2^{k+2} - 1 - 2^{k+2}$ $= 2.2^{k+2} - 1$ $= 2^{k+3} - 1$ QED